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Abstract: A simple means of computing the rate of conformational space sampling and energy transfer in computer 
simulations of biomolecules using replica molecular dynamics is described. The method is based on the idea that in 
an ergodic system trajectories should be self-averaging—properties measured over two independent trajectories must 
average to the same result. Replica molecular dynamics simulation is used to calculate the generalized ergodic measure 
and the rate of self-averaging for the force and potential energy for the S-peptide and RNase A enzyme over a range 
of temperatures from 40 to 400 K. The results clearly demonstrate that even on a short time scale on the order of 10 
ps, several distinct conformational states are sampled. The ergodic measures are used to obtain quantitative estimates 
of the rate at which conformational substates separated by relatively small barriers (on the order of a few kcal/mol) 
are sampled. Examination of the ergodic measure for nonbonded and dihedral angle forces proves that the time required 
for effective conformational space sampling is long (especially motions involving long length scales) compared to 
realizable computational times at all temperatures. The atomic force ergodic measure is evaluated for a harmonic 
system of normal modes and shown to provide a direct means of calculating the second moment of the vibrational density 
of states for the protein using a short dynamics trajectory. Finally, the instantaneous normal mode spectrum is calculated 
for the S-peptide as a function of temperature. A simple model of the potential energy hypersurface is developed and 
used to interpret the fraction of unstable modes in terms of the distribution of energy barriers separating the various 
peptide conformational substates. The distribution of energy barriers has a constant density of low-energy barriers 
and a Poisson distribution of high-energy barriers. The resulting energy barrier distribution is used to calculate the 
number of dihedral angle transitions expected in a dynamic trajectory, and the results are in good agreement with those 
found in the simulations. This study contains the first semianalytic method for extracting the distribution of barrier 
heights in systems with complex energy landscapes. The implications of our study for biomolecular simulations are 
discussed. 

I. Introduction y—\ 

It is widely believed that "complexity" in the inherent energy 
landscape is responsible for the rich dynamical behavior in 
proteins. The rugged energy surface arises because of the presence 
of many energy scales in proteins, i.e., due to the intrinsically 
heterogeneous nature of the systems. The equilibrium and 
dynamical properties of proteins are thought to be determined 
by a temperature-independent multidimensional potential hy
persurface consisting of many minima (conformational substates), 
maxima, and saddle points (see Figure 1). In this picture, the 
distribution of energies for the minima, the frequencies of vibration 
about the minima, and the distribution of barrier heights 
separating these conformational substates determine the ther
modynamics and dynamics of the system. The qualitative aspects 
of the conformational substates (CSs) model are certainly beyond 
doubt—there exist many minima, corresponding to unique protein 
conformations, with a distribution of energies. This point has 
been confirmed by the disorder seen in X-ray crystallographic 
studies and in the wide distribution of time scales for protein 
motion seen in the ligand photodissociation/rebinding experiments 
of Frauenfelder and co-workers on heme proteins.1 However, 
only a few studies have provided the quantitative information 
needed to describe the distribution of minimum energy confor
mations, the rate of exploration of these conformations, the barriers 
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Figure 1. Schematicoftheenergysurfaceofaprotein. The solid contours 
correspond to a fixed value of the total energy. Isoenergetic conformers 
belonging to the minima labeled a and b are separated by the potential 
barrier AEat- In general there are numerous minima and a distribution 
of barrier heights. 

separating these CSs, and the relation to measurable properties 
such as free energies and relaxation. 

In this paper we describe general numerical methods that can 
be used in conjunction with standard computer simulation 
techniques to characterize the minimum energies, vibrational 
frequencies, and barriers for the potential hypersurfaces of 
peptides and proteins. Specifically we address two broad 
questions. (1) How can the existence of the conformational 
substates and the rate at which they are sampled be determined 
using finite time molecular dynamics trajectories? One of the 
important conclusions of our study is that, even in tens of 
picoseconds, several distinct CSs are sampled.2 Moreover, we 
find that there is a distribution of rates of sampling of the CS, 
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implying that many barriers of differing heights are involved. (2) 
Can instantaneous normal mode spectra of the protein be used 
to obtain a distribution of barrier heights # ( £ B ) in proteins? We 
introduce a novel method based on a simple caricature of the 
protein's energy surface that leads to an integral equation relating 
g(Ea) and the fraction of unstable modes at a given temperature, 
/„(T). Our results suggest that the Poisson distribution char
acterizing g(Ev) may indeed be a generic feature of proteins and 
perhaps of other heterogeneous systems as well. A summary of 
the major results has been presented in a recent communication.3 

There have been a few numerical studies which have dem
onstrated that there are several thermally accessible minima in 
the neighborhood of the native structure of any protein. Elber 
and Karplus have used quench structures generated from a high-
temperature (300 K) molecular dynamics (MD) trajectory of 
myoglobin to describe the distribution of energies of the distinct 
minima.4 They argued that the structural differences between 
the distinct minima of the various conformational substates 
correspond to relative orientations of the helices which seem to 
be initiated by side-chain rearrangements. In addition, studies 
in model proteins have also shown that there are distinct pockets 
in the energy landscape in which structures are similar but with 
differing energies.5 It has been argued that these distinct minima 
correspond to tier 0 in the conformational substates model of 
Frauenfelder et al. On the other hand, the minima found by 
Elber and Karplus correspond to substates within a single tier 0. 

Reaction path studies of Czerminski and Elber have enumerated 
the minima available in a tetrapeptide and the distribution of 
barrier heights connecting the many minima.6 The barriers 
separating the minima range from tenths of a kcal/mol to 5 or 
10 kcal/mol. Using this detailed knowledge of the minima and 
their connectivity, Czerminski and Elber divided the minima into 
disjoint sets where the minima forming each set were connected 
by barriers less than or equal to a given cutoff energy. At low 
energies, the number of sets is the total number of minima; at 
high cutoff energies, all the minima are connected, forming a 
single set. In the neighborhood of a cutoff energy of 5 kcal/mol, 
Czerminski and Elber found a sharp decrease in the number of 
clusters of minima, which they suggested to be a lakes-to-oceans 
percolation transition.7 Time scales for motions which depend 
on activated transitions at room temperature will range from 
picoseconds (transitions between similar structures confined to 
a small set of minima separated by barriers on the order of k$T) 
to seconds (where activated transitions over large barriers are 
required and before minima of disjoint sets can be bridged). To 
date, the study of Czerminski and Elber represents the most 
complete characterization of the 0 K potential energy surface of 
a peptide or protein. Through these computational studies,2-6 an 
increasingly detailed picture of the nature of the conformational 
substates of proteins and peptides has emerged. 

In addition to introducing numerical methods for analyzing 
the distribution of energy minima and barrier heights in proteins, 
we also want to address the technical question of the adequacy 
of sampling the distinct conformations of proteins in the 
computation of thermodynamic averages using molecular dy
namics. It is well appreciated that the time scales involved in the 
folding of a protein from a random coil configuration using 
molecular dynamics is beyond the current limits of computer 
simulation. In fact, the number of conformations increases 
roughly exponentially with the number of atoms, thus making an 
exhaustive search of the conformation space prohibitive for all 
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Figure 2. Schematic diagram of the conformational space available to 
a protein and the portions of this space which represent native, biologically 
active conformations and those which are inactive, being incorrectly folded 
or unfolded. Also indicated are regions which are sampled in a molecular 
dynamics calculation in vacuo and a more realistic treatment with solvent. 

but the smallest systems.8 For the same reason, in an all-atom 
representation it is currently impossible to calculate thermody
namic averages for the unfolded state of a protein. Thus, coarse 
grained models have been useful in providing a general picture 
of the folding transition.5,9-12 In the folded state of a protein, the 
number of conformations available is greatly reduced from that 
in the unfolded state. X-ray diffraction structures indicate that 
the majority of residues are in specific conformations and that 
there is limited, although often important,13 disorder in the 
dihedral angles of the backbone and side chains. Similar 
observations have been made for carcinogen adducts in DNA.14 

Comparison of average structure and atomic fluctuations of 
atoms in computer simulations with those derived from experiment 
indicate that for many residues the conformations available in 
the folded state are being sampled adequately.15 However, this 
is not always the case. In Figure 2, we schematically represent 
our view of the conformation space available to a protein. This 
space can be divided into two regions containing (1) the native, 
biologically active conformers and (2) incorrectly folded or 
unfolded random coil configurations, which are inactive. The 
X-ray structure is represented as a single conformation within 
the space of possible native-like structures. 

Superimposed on this division of the conformation space is a 
representation of the conformational space explored by a molecular 
dynamics trajectory originating from the X-ray structure both 
in vacuo and in solvent. The temperature is assumed to be one 
for which the native protein would be thermodynamically stable 
for days or more, meaning that an accurate trajectory for the 
solvated protein would move within the space of native-like states 
of the protein. Simulations which ignore solvent may sample 
conformations of the protein outside the space of native-like states, 
within which an accurate simulation of the protein would be 
expected to remain. Another important point is that calculations 
of picosecond or nanosecond duration will not explore the full 
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conformation space of the native-like states. To do so would 
require sampling fluctuations over a broad range of time scales 
extending to milliseconds or longer. 

In light of the above picture, the question arises, with the wide 
distribution of time scales present, as to whether one can hope 
to obtain a reasonable estimate of thermodynamic averages from 
a computer simulation of a protein. In particular, can standard 
MD methods be suitably modified to obtain relatively accurate 
values for thermodynamic properties? 

Some of the issues raised above are tackled in this study using 
replica molecular dynamics simulations of the 19 amino acid 
S-peptide and full RNase A/3'-UMP enzyme/product complex 
as illustrative examples. The rest of the paper is organized as 
follows. In section II we present a powerful method for measuring 
the convergence of averages over dynamics trajectories using 
replica molecular dynamics—the generalized ergodic measure 
(GEM). We have recently presented a related analysis using 
this technique to examine the rate of sampling kinetic energy and 
atomic force and found it to be a useful analytical tool for 
investigating time scales for energy equipartitioning and con
formational space sampling.2'3 In this study we calculate the 
rate of self-averaging for the atomic force and the nonbonded 
and dihedral potential energy using replica molecular dynamics 
and the generalized ergodic measure. The force metric is 
evaluated analytically for a system of normal modes, and the rate 
of convergence for the total force is shown to be related to the 
second moment of the vibrational density of states for the system. 
The details of this calculation are presented in the Appendix. In 
section III, we further analyze the dynamics of the S-peptide by 
calculating the instantaneous normal mode spectrum as a function 
of temperature. Employing a simple model, we are able to extract 
an estimate of the distribution of barrier heights encountered 
during the simulation by solving an integral equation. The 
computational details are presented in section IV, and the results 
of our study are discussed in section V. The paper is concluded 
in section VI with a few additional remarks. 

II. Generalized Ergodic Measures (GEMs) 

In this section we present the definition of the force metrics 
d(t) and the associated fluctuation metrics measuring the approach 
to the equilibrium values of physical observables. The motivation 
for introducing these quantities for probing the conformational 
states in heterogeneous systems is given elsewhere.2 Finally, we 
present a detailed analysis of the total force metric for a harmonic 
system with a general frequency distribution and for the particular 
case of the Debye model. 

A. The Fluctuation Metric G(f). Suppose we have an 
observable Fj(t) for the y'th atom of a system of N atoms, for 
example, for the total force, Fj(t) = mj dvj/dt. We write the time 
average of Fj(t) as 

//0-^f0W/,) (D 

Further, writing the average of/}(f) over all N atoms of the system 
as 

Kt^zt/W (2) 

/ V J - I 

we can define the mean square difference of the individual _/}(?) 
values from the average J\t) as 

n(0 = | f > , ( 0 -fit)}2 (3) 

This is known as the fluctuation metric.2 It can be shown that 

after a short time the function Q(O decays to zero with l/t or 
that16 

O(0)/O(«) « Dt (4) 

The slope is proportional to a diffusion constant for the exploration 
of the range of values (space) accessible to the variable F(t). The 
power law decay of Q(f) to zero at long times implies that the 
system is "self-averaging"—that the time-averaged property fj(t) 
of the 7th atom converges at long times to the same value/If) for 
all N atoms of the system. This is a necessary, but not a sufficient, 
condition for the system dynamics to be ergodic. For example, 
imagine that phase space is divided into two regions A and B by 
an impassable barrier. Within either region, given enough time, 
any trajectories will explore all of the allowed phase space. For 
a set of trajectories started in region A, 8(f) will decay to zero 
and the property F(t) will appear to be self-averaging. However, 
unless we start one of the trajectories in region B, we cannot know 
that the partition exists and that the system is not ergodic. 
Therefore, the decay of Q(f) to zero is a necessary, but not a 
sufficient, condition for ergodicity. It is, however, a readily 
calculable measure of the convergence of a given property in a 
numerical simulation. This is particularly true in a liquid or 
protein, where the calculation of alternative measures of ergodicity 
(or stochasticity), such as Lyapunov exponents,17 is considerably 
more involved and not as obviously relevant to the convergence 
of thermodynamic properties as the ergodic measure. 

B. The Force and Energy Metrics d( t). The fluctuation metric 
fi(f) provides a measure of the rate of averaging a given property, 
such as the kinetic energy, over a single trajectory. An alternative 
is to calculate averages over two independent trajectories and to 
measure the rate at which these two independent averages converge 
to the same value, as they must for an ergodic system. This 
becomes necessary when the underlying energy landscape has a 
multivalley structure, as is the case in proteins. We have extended 
this idea to examine the rate of convergence for the various 
contributions to the atomic force (bonds and angles, dihedrals, 
and nonbonded van der Waals and Coulombic interactions) in 
peptides and proteins.2 

In this section we define the force metric and evaluate it for 
the special case of a harmonic system. The equations for the 
energy metric are found by substituting the scalar energy into 
expressions where the corresponding force vector is found. The 
averages of the force on the j'th atom is defined as for the 
fluctuation metric as 

#<0-}j>*/« (5) 

where a indicates that the average is calculated over the ath 
independent trajectory. Given two independent trajectories a 
and b, starting from independent initial configurations, we define 
the difference between the averages calculated over each trajectory 
as the metric 

d(t)=^iy;(t)-jj\t)\2 (6) 
Nj-i 

In an ergodic system, at long times the averages of each trajectory 
converge to the same value and the metric decays to zero as d(t) 
ai 1/Dt.16 Conversely, if d(t) does not decay as a power law, 
then it is clear that there must be a bottleneck separating the 
initial conformations, i.e., a and b must belong to two distinct 
CSs. This method of computing d(t) is termed replica molecular 
dynamics because in practice one generates two replicas of the 
system, corresponding to two independent initial conditions. 

(16) Thirumalai, D.; Mountain, R. D. Phys. Rev. A 1990, 42, 4574. 
(17) Lichetenberg, A. J.; Lieberman, M. A. Regular and Stochastic Motion; 
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A useful decomposition of the force metric shows the rela
tionship to the fluctuation metric for each trajectory a and b. By 
expanding the norm in eq 6, we can rewrite the metric as2'16 

< / ( 0 - n ' ( 0 + n'(*)-A"*(0 (7) 

in terms of the fluctuation metrics for trajectories a and b 

1 N 

fl"(0 = - £ l ? / « ) - 7 / ( 0 P a = a and ft (8) 

and a cross term measuring the correlation or overlap between 
the two trajectories 

A*(O--T7/M-7/(0 (9) 
N*Y 

For the metric to decay to zero, either (1) the cross terms and 
the fluctuation metrics must decay to zero or (2) the cross term 
must equal the sum of the fluctuation metrics, meaning the 
individual atomic averages must be equal for the two trajectories, 
Jf(S) =7f(t), for all atoms. For proteins and peptides where the 
relaxation of the atomic force or energy requires activated 
conformational transitions over energy barriers of many kcal/ 
mol, the rate of convergence is slow. As such, the rate of 
convergence of d(t) provides insight into the barrier height 
distribution and the approximate times needed for overcoming 
the bottlenecks. In a previous study we showed that the rate of 
convergence for the nonbonded force is tied to the relaxation of 
the dihedral angle degrees of freedom and is a very slow process 
at room temperature.2 

1. Calculation of dn( t) for an Ideal System of Normal Modes. 
When the fluctuations of a system consist of small excursions 
about a well-defined average structure, it is often a good 
approximation to model the dynamics of the system of N coupled 
3-dimensional Cartesian coordinates on 3./V uncoupled 1-dimen
sional normal mode coordinates. Zero temperature normal mode 
calculations are now commonly used to analyze the distribution 
of vibrational frequencies in proteins and peptides about a potential 
minimum.15 While the exact values of the lowest frequency 
vibrations are sensitive to the particular method used to truncate 
the long-range potential, the characters of the modes described 
by the eigenvectors have provided valuable insight into global 
fluctuations in proteins18-20 and smaller helicies.21 With a 
knowledge of the normal mode vibrational density of states, the 
thermodynamics and dynamics of the system are completely 
solved, provided anharmonic motions are not significant. Here 
we evaluate the force metric d(t) within the normal mode 
approximation. 

In a zero temperature normal mode approximation, the 
potential is expanded in a Taylor series of the 3N coupled 
coordinates fN about a mechanically stable equilibrium position 
hN 

N NN 

U^) = U0(r0
N) - "£FJ.XJ + V 2 E Z w * ; (10) 

J J i 

where the potential energy at the equilibrium position is Uoiro1*), 
Z = (F1- to"), F = -V1U(^ is the 3./v"-diinensional force vector 
(which is zero about the equilibrium position), and K is the (3N 
X 3iV)-dimensional force constant matrix or matrix of second 
derivatives about the equilibrium position whose eigenvalues are 
the square of the eigenfrequencies o>( for the 3^-6 normal modes 

(18) Brooks, B.; Karplus, M. Proc. Natl. Acad. Sci. US.A. 1983,80,6571. 
(19) Levitt, M.; Sander, C; Stern, P. S. / . MoI. Biol. 1985,181, 423. 
(20) GO, N. T.; Noguti, T.; Nishikawa, T. Proc. Natl. Acad. Sci. US.A. 

1983, 80, 3696. 
(21) Roux, B.; Karplus, M. Biophys. J. 1988, 53, 297. 

of vibration and the three translational and three rotational modes 
of zero frequency representing the rigid body motion of the protein. 

It is possible to evaluate the total force metric in the harmonic 
approximation. The details are provided in the Appendix. The 
final result is 

12*B7Y ! 3* -j 
« W 0 = M--V(ZM)1-COS(U1.*) (11) 

t1 L 3N/ J 

We have defined the "average mass of the /th normal mode" as 

N 

<«>, « £ / » > / (12) 
j 

using the normalization condition, for the eigenvectors aji for the 
(th normal mode, that 

j 

Calculation of <m>< using the density of states for a number of 
proteins has shown that the average mass is fairly independent 
of the mode number for low-frequency modes due to the 
delocalized nature and the participation of all atoms in the 
system.22 This approximation is examined in the case of the 
S-peptide in section V. 

The initial value of the metric determined from eq 11 can be 
expressed 

1 3N 

</„«» = 6kBT— Y (m)^2 = 6*Br<(w)w
2) (14) 

3A" ( 

The outer angular brackets in the rightmost equation indicate an 
average over all normal modes. Combining eqs 11 and 14, we 
find a remarkably simple form for the asymptotic limit of the 
force metric in the normal mode representation 

^Fr(O)Mr(O = 2^<<m)a>2) (15) 

If we approximate the average mass of each normal mode as the 
average mass of an atom in the system {m)t at M (see Figure 
7 and surrounding discussion), we find the useful approximate 
result 

<*Fr(0)/<*FT(0 <* 7 2 ' V > (16) 

where <«2) is the second moment of the density of states. For 
a system undergoing harmonic motion, the inverse force metric 
will converge in time as t2. More importantly, the curvature will 
provide an estimate of the second moment of the vibrational density 
of states for the system. 

2. Evaluation of <frr(f) for the Debye Model. For properties 
which are dominated by the fluctuation of global, low-frequency 
vibrations, a continuum approximation such as the Debye model 
can provide a good estimate of the vibrational density of states. 
For a system of N atoms, the Debye distribution is given by 

where g(w) is normalized as 

£Ddwg(w) = 3N (18) 

The zero-time value of the force metric in the Debye model is 
simple to calculate. The leading order term in time, which is the 

(22) Straub, J. E., unpublished results. 
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only one to survive after an initial short time decay, is temperature will be3 

d^Oyd^t) - (V10)V'2 d9) / i ( 7 ) = J ; d £ B giEB)-UT,EB) (20) 

This result provides a means of calculating the approximate Debye 
frequency for the system from the curvature of the total force 
metric. 

It has been suggested that for glasses the low-frequency behavior 
of the density of states is a power law g(u) « u" with a < 2. It 
may be that for proteins this is also the case. Our calculation of 
the Debye frequency is simply meant to provide a convenient 
measure of the scale of frequencies in g(a>). 

in. Instantaneous Normal Mode Spectra 

The normal mode model has provided valuable insight into the 
nature of fluctuations in proteins. 18_2° Normal mode calculations 
are typically carried out at zero temperature by expanding the 
potential about a mechanically stable energy minimum of the 
potential surface, where the force on all atoms is zero. Recently, 
a number of studies in liquids composed of spherical particles 
have proved the usefulness of calculating normal mode frequencies 
for conformations chosen randomly from a dynamics trajectory. 
The instantaneous normal modes spectrum of eigenfrequencies 
consists of a lobe of real frequencies corresponding to stable, 
bounded motion and a lobe of imaginary frequencies corresponding 
to unstable motion over regions of the potential surface with 
negative curvature.23 By performing instantaneous normal mode 
calculations for dynamics trajectories at a series of temperatures, 
it is possible to monitor the change in character of the potential 
surface traversed at increasingly higher temperatures. The 
percentage of imaginary frequencies has been shown to be 
intimately related to the process of barrier crossing and the onset 
of self-diffusion in the transition from solid or glass to liquid.24-26 

It is straightforward to extend such calculations to proteins. 
At low enough temperatures, we expect to see an instantaneous 
normal mode spectrum consisting of stable motion about a single 
potential minimum. As the temperature is increased, barriers 
will be traversed, primarily by dihedral angle fluctuations of side 
chains, which will show up as unstable, imaginary frequencies. 
It is also expected that the anharmonicity of the protein potential 
surface will manifest itself in a significant number of imaginary 
frequencies not associated with dihedral angle transitions or barrier 
crossing. This is the case for water clusters, where Buch has 
found a significant percentage of imaginary frequencies at 
temperatures where there is no self-diffusion.27 Similar obser
vations have been made for Lennard-Jones systems by Beck.28 

Given a general form for the potential, one can, in principle, 
calculate the equilibrium percentage of unstable modes at a 
particular temperature. For an ergodic system, this could also 
be accomplished using a dynamics trajectory or Monte Carlo 
since /u( T) is an intensive equilibrium thermodynamic property 
of the system. However, if we assume that the system of N 
nonlinearly coupled three-dimensional Cartesian coordinates can 
be accurately described by the 3iV one-dimensional normal 
coordinates, the problem is greatly simplified. If we further 
assume that the potential for each of the normal coordinates is 
periodic piecewise parabolic and defined solely by a barrier height 
£B (which may be different for each mode), it is straightforward 
to calculate the fraction of unstable modes/u( 7VEB) as a function 
of temperature. For the 3N normal coordinates, there will be a 
distribution of barrier heights g(E6) which is normalized to unity. 

Assuming a continuous distribution of barrier heights, the 
fraction of unstable modes for the system measured at a particular 

(23) Rahman, A.; Mandell, M.; McTague, J. P. / . Chem. Phys. 1976,64, 
1564. 

(24) LaViolette, R. A.; Stillinger, F. H. J. Chem. Phys. 1985, 83, 4079. 
(25) Rosenberg, R. O.; Thirumalai, D.; Mountain, R. D. / . Phys.: Condens. 

Matter 1989, /, 2109. 
(26) Seeley, G.; Keyes, T. J. Chem. Phys. 1989, 91, 5581. 
(27) Buch, V. / . Chem. Phys. 1990, 93, 2631. 
(28) Beck, T. L.; Marchioro, T. L., II. J. Chem. Phys. 1990, 93, 1347. 

For a periodic piecewise parabolic potential 

( V2K*2 2nAx < x + l/2Ax < (2« + I)Ax 
~ [E3 - 1Z2KX2 {In + I)Ax < x + 1I2Lx < 2nAx 

(21) 
where Ax = 2(EB/K)'/2, the fraction of unstable modes can be 
calculated for a particular value of T and EB 

e-* |>ixe* 2 

where f = (0£B/2) 1 / 2 . By calculating/„(70 from a dynamics 
trajectory at a series of temperatures, one can, in principle, solve 
eq 20 and extract the distribution of barrier heights giEB) for the 
system. It is possible to derive other approximations for the kernel 
7u( TVEB) by assuming that the well frequencies are different. 
This leads to additional complications that are not worth 
describing, given the simplicity of the caricature of the potential 
energy surface. 

IV. Computational Details 

We carried out calculations on the S-peptide of bovine 
pancreatic ribonuclease A [KETAAAKFERQHMDSSTSA] and 
the RNase A/3'-UMP enzyme/product complex in vacuum.2 

The initial conditions for each system were taken from the X-ray 
structure of the RNase A/3-UMP complex. The protein 
parameters are based on the version 19 CHARMM parameter 
set. The inhibitor and histidine parameters were developed 
separately and are presented elsewhere.29 

The dynamics were performed at constant energy using a 
modified version 20 of the CHARMM simulation program.30 

The Verlet algorithm with a time step of 0.5 fs was employed to 
avoid the use of rigid constraints on bonds involving hydrogen 
atoms. A distance-dependent dielectric of the form e(r) = Ar was 
employed in our vacuum simulations. Nonbonded interactions 
were truncated by multiplying the potential due to charge and 
van der Waals interactions by the atom-based shifting function 
of the form 

S(r) J ( I - W ) ) 2 0<r*re 
(0 rc<r 

For our study, rc = 12 A. Calculations on myoglobin have shown 
that truncation of the long-range interactions using the shifting 
function were superior to truncation using group- or atom-based 
switching functions and provide a good approximation to 
calculations performed with no cutoff.31 

Trajectories were run at a series of temperatures ranging from 
40 K to 400 K. Equilibration was carried out for the a structures 
over a 50-ps run using velocity rescaling every 0.5 ps and starting 
from the X-ray structure. (An exception was the equilibration 
at 40 K for 150 ps.) Calculation of the force metric requires an 
independent b trajectory at the same temperature T1. To generate 
independent initial conditions for the b trajectory, we ran 50 ps 
of equilibration dynamics at a higher temperature T2 to "am-
nesiate" (induce a state of amnesia in) the molecule and then 
quenched and reequilibrated the trajectory at the previous 
temperature T\ for 50 ps. The trajectories with T\ = 40 and 80 
K were amnesiated using a T1 = 120 K; for the Tx = 120, 160, 
and 240 K trajectories, T2 = 300 K; for the Ti - 300 K trajectory, 

(29) Straub, J. E.; Lim, C; Karplus, M. / . Am. Chem. Soc., in press. 
(30) Brooks, B. R.; Bruccoleri, R. D.; Olafson, B. O.; States, D. J.; 

Swaminathan, S.; Karplus, M. / . Comput. Chem. 1983, 4, 187. 
(31) Loncharich, R. J.; Brooks, B. R. Proteins 1989, 6, 32. 
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Ti = 400 K. For the enzyme, the second trajectory was initiated 
from the equilibrated 300 K structure and reequilibrated for 25 
ps at Ti = 40 K and 12.5 ps at T1 = 120 and 240 K. For Tx -
240 and 300 K, the trajectories were amnesiated for 12.5 ps at 
T1- 400 K and then reequilibrated at Tx for 12.5 ps. 

Instantaneous normal mode frequencies were calculated from 
the 7 5-ps a trajectory at each temperature. Structures were chosen 
every 0.625 ps (1250 time steps), and 120 structures were 
examined at each temperature. All calculations were performed 
on a Stardent 3030 computer at Boston University. 

V. Results and Discussion 

To examine the rate of conformational space sampling and 
energy equipartitioning using replica molecular dynamics, we 
ran a series of trajectories at temperatures ranging from 40 to 
400 K. At each temperature, two "independent" trajectories were 
generated using the methods described in section IV. In this 
section we report the results for the rate of force and energy 
averaging for the S-peptide and RNase A systems. This is 
followed by the results of our instantaneous normal mode analysis 
for the S-peptide as a function of temperature. We begin by 
characterizing the changes in structure of the S-peptide as a 
function of temperature for two independent trajectories a and 
b. 

A. Conformational Characteristics of the S-Peptide. For the 
S-peptide we have characterized the conformations of two 
independent trajectories a and b generated at each temperature. 
In Figure 3 we show the average potential and total energy for 
each trajectory as a function of temperature. The energy of the 
a trajectory increases monotonically and linearly with temper
ature, while the energy of the b trajectory is noticeably higher 
relative to the a trajectory at 40,80, and 160 K. The same trend 
is seen in the total energy. 

The a trajectories were heated directly from the X-ray structure, 
and the linearly increasing average potential and total energy are 
typical of a harmonic system. The higher temperature equili
bration and quench carried out in generating the initial conditions 
for the b trajectory allow the structure to make transitions away 
from the initial conformation. At some temperatures (40, 80, 
and 160 K) this leads to the localization of the b trajectory in a 
higher lying substate, while at other temperatures (120,240, and 
300 K) the potential energy is annealed and lower than that of 
the a trajectory. 

Experimentally, the S-peptide portion of the ribonuclease A 
enzyme is helical at most through residue 13 in the X-ray 
structure.32,33 Plots of the (0,^) angles for the interior residues 
3-13 calculated from the average structure are shown in Figure 
4. We see that for the a trajectory the peptide is strongly helical 
below 160 K and that at higher temperatures the helix unravels. 
We find that the unraveling starts from the C-terminus. The 
(0,^) maps of the b trajectory at low temperatures show a 
predominance of helical residues at 40 and 80 K which is absent 
at 120 K and above. This indicates that the heating involved in 
the preparation of initial conditions for the generation of the b 
trajectories leads to an unraveling of the helix which is not restored 
in the quench. 

The change between full and partial helical character of the 
a trajectories as the temperature is increased beyond 240 K 
manifests itself as a clear decrease in the radius of gyration Rt, 
defined for a system of TV atoms as 

N2Kj 
(24) 

Results for the radius of gyration are shown in Figure 5 for the 
S-peptide as a function of temperature. For reference, we have 
noted the Rt for a model-built "perfect" helix where (0,^) = 

(32) Kim, P. S.; Baldwin, R. L. Nature 1984, 307, 329. 
(33) Nelson, J. W.; Kallenbach, N. Proteins 1986, 1, 211. 
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Figure 3. Average (top) potential energy and (bottom) total energy for 
the a and b trajectories of the S-peptide as a function of temperature. 

(-60°, -60°) for each residue. At low temperatures (40 and 80 
K), the S-peptide is frozen in its extended helical configuration 
with large R1. At 120 K, the peptide helix folds on itself, preserving 
the helical ((j>,4>) angles but leading to a compact structure with 
small Rt. Similar behavior is found at 160 K. At temperatures 
above 240 K, the helix unravels and entropic effects lead to an 
extended random coil with increased Rt. 

For the b trajectory at 40 and 80 K, Rt is small and nearly 
identical to that of the a trajectory at 120 K, which was its 
precursor. At 120, 160, and 240 K, Rt of the b trajectory is 
similar to that of the precursor 300 K a trajectory. As expected, 
both the a and b trajectories show similar R1 values at high 
temperatures. Overall, the radius of gyration is well correlated 
with the extent of helical conformation as a function of 
temperature and provides a useful measure of the compactness 
of the structure. 

Simulations of 30-mers of polyglycine and polyalanine both in 
vacuum and in solution have shown that the a-helix tends to be 
destabilized by solvation.34 In the presence of water, it has been 
observed that the opening of a N—H-C=O hydrogen bond is 
accompanied by insertion of a water molecule to form a three-

(34) DiCapua, F. M.; Swaminathan, S.; Beveridge, D. L. J. Am. Chem. 
Soc. 1991,113, 6145. 
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Figure 4. Series of <t>, \j/ plots showing the conformations of the inner 3-13 residues of the S-peptide at a number of temperatures. 

centered hydrogen bond which functions as an intermediate to 
helix unfolding. Support for this mechanism has been lent by 
simulations of an S-peptide analogue in solution, where it was 
observed that main-chain helical hydrogen bonds would often 
open through an a *=* 3io *•* no hydrogen bond mechanism.35 In 
the later simulation, the S-peptide analogue in solution was found 
to be stable over a 300-ps trajectory at 278 K but was observed 
to partially unravel during a 500-ps trajectory at 358 K. This 
behavior correlates well with experimental evidence for the helix 
stability. 

While our simulations were performed in vacuum, it is worth 
noting the important side-chain contacts which persisted over the 
length of each simulation. It has been proposed, and seems quite 
plausible to us, that contacts formed between side chains along 
the a-helix can act to stabilize the a-helix formed between residues 

(35) Tirado-Rives, J.; Jorgensen, W. Biochemistry 1991, 30, 3864. 

3 and 13. Maximum helix formation is seen near pH 5, where 
the His 12 residue would be protonated and charged. In our 
simulations, titratable residues were protonated to simulate neutral 
pH, and the His 12 residue was neutral. It has been suggested 
that a salt bridge formed by GIu 9" and His 12+ at low pH acts 
to stabilize the a-helix.36 No contact between GIu 9- and His 12° 
was observed in our simulations at any temperature. 

A salt bridge formed by His 12+ and Asp 14~ has been suggested 
as a possible helix stop signal by Kim and Baldwin.32 In our 
simulations, the His 12 was neutral and no contact was observed 
at any temperature between His 12° and Asp 14~. In agreement 
with experimental evidence, no helix formation was observed 
beyond residue 13. 

(36) Bierzynski, A.; Kim, P. S.; Baldwin, R. L. Proc. Natl. Acad. Sci. 
US.A. 1982, 79, 2470. 
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Figure 5. Radius of gyration Rt for the a and b trajectories of the S-peptide 
as a function of temperature. 

In our lowest temperature simulation, a hydrogen-bonding 
quadruplet was observed between Lys 7+—Gln 11°—His 12°—C-
terminal COO- along one side of the a-helix. At higher 
temperatures, the contact between Lys 7+ and GIn 11° was 
maintained (through 400 K). Similarly the contact between His 
12° and the C-terminal carboxylate was observed at 40,160,300, 
and 400 K. Tirado-Rives and Jorgensen have noted that in their 
simulation of the S-peptide analogue at 278 K, the His 12 residue 
turned toward the C-terminus.35 At 240 K, a salt bridge was 
formed between the C-terminal carboxylate and Lys 7+. The 
initial contact between GIn 11° and His 12° was lost above 120 
K. 

The salt bridge formed by a contact between GIu 2" and Arg 
10+ was observed at every temperature but 80 K. In the simulation 
of Tirado-Rives and Jorgensen of the solvated S-peptide analogue 
at 278 K, it was observed that the contact ion pair was replaced 
by a solvent-separated ion pair. 

We have noted that at higher temperatures the a-helix observed 
at low temperatures between residues 3 and 13 unravels from the 
C-terminal end. Previous studies of solvent effects on helix 
stability might lead us to believe that the S-peptide helix would 
be more stable in vacuum (as in our simulations) than in solvent 
(as in experiment).34 However, a possible contribution to the 
instability of the helix in our simulations is that we employed a 
neutral His 12 residue as we might expect to find at pH 7. While 
a salt bridge between GIu 9" and His 12+ has been suggested as 
a helix stabilizer, we saw no favorable contact between GIu 9~ 
and His 12° in our simulations. Further simulations of the 
S-peptide at neutral pH and pH S could be used to test this 
hypothesis. 

B. Force and Energy Averaging. We calculated the force metric 
for the total force acting on atoms of the S-peptide as a function 
of temperature using trajectories a and b, and the results are 
presented in Figure 6. At all temperatures the inverse total force 
metric </FT(0) /</FT(0 shows a clear t2 dependence with a curvature 
that is independent of temperature as predicted by our analysis 
(see section II and the Appendix). 

We expect that the total force on atoms in the peptide is 
dominated by local harmonic bond and angle terms due to the 
highly connected nature of peptides and proteins. Out of the 3Â  
- 6 vibrational degrees of freedom, there are Af - 1 bonds and 
N-I angles, in addition to many dihedral angles with high 
barriers, where the motion at room temperature is effectively 
harmonic. Therefore, the majority of degrees of freedom will be 
harmonic, and the normal mode picture, particularly at short 
times and high frequencies, will provide a good approximation 

.-> 2500 -
S-. 

O 

5 

Time (ps) 
Figure 6. Reciprocal of the total force metric, ̂ FT(0)/^FT(')> as a function 
of time for the S-peptide at seven temperatures. The plot demonstrates 
that the inverse of the normalized force metric is identical at all 
temperatures. 

to the peptide motion. This implies that algorithms designed to 
exploit short time oscillatory dynamics in near-harmonic systems 
can potentially lead to significant savings in computer time for 
molecular dynamics of biomolecules.37 

Analysis of the total force metric for a harmonic system led 
to the result 

dFT(Q)/dFT(t) = <<oV/2 

(see Section II.B.l), where we have defined the average mass of 
the fth normal mode as 

<m),. = Jynjfl/ (25) 

How sensitive a function of the details of the normal mode 
frequency and eigenvector is (m) < ? Previous results have shown 
that with the exception of the hydrogen stretches, (m)< is fairly 
independent of the details of the specific normal mode and can 
be reasonably approximated by the average mass of the protein 
atom, M.22 The result for the specific case of the S-peptide is 
shown in Figure 7. For all but the highest frequency localized 
modes, (m)i is reasonably independent of mode number. This 
is expected for the lower frequency global fluctuations, where the 
participation of all atoms is nearly equal. To a good approxi
mation, we can replace the average mass for the ith normal mode, 
(m)i, with the average atomic mass for the peptide or protein 
atoms, M. For the S-peptide in the polar hydrogen model, M • 
11.62 g/mol. For the higher frequency modes localized in dihedral 
angle out-of-plane bends and carbonyl stretches, the insensitivity 
of (m)i to mode number is likely due to the few atom types and 
limited range of atomic masses for the protein heavy atoms (mostly 
C, N, and O). 

Within the approximation that (m >( = M, the total force metric 

..2\«2 
<*FT(0) /<W) <* li(o>2)t 

Thus a short dynamics trajectory is all that is needed to calculate 
dyiif), providing a straightforward means of calculating the second 
moment of the vibrational density of states (a>2) for the S-peptide 

(37) Tuckerman, M.; Martyna, G. J.; Berne, B. J. /. Chem. Phys. 1990, 
93, 1287. 
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Figure 7. Histogram of the average mass of the fth normal mode of the 
S-peptide as defined by eq 12 as a function of the mode frequency. The 
plot demonstrates that, with the exception of the highest frequency normal 
modes, the average mass, (m)t, is relatively independent of frequency 
and is reasonably well approximated by the average atomic mass M. 

Table 1. Summary of Results for the Moments of the Imaginary 
and Real Lobes of the Instantaneous Normal Mode Density of States 
at Each Temperature" 

T(K) 

0 
5 

10 
40 
80 

120 
160 
240 
300 
400 
500 

UT) 
« 0 

0.12 
0.55 
1.79 
2.57 
2.14 
3.31 
3.97 
4.66 
5.18 
5.83 

imaginary 

<o>) 

-8 .5 
-13 .7 
-19 .1 
-39 .3 
-54 .3 
-66 .7 
-88 .0 
- 9 5 . 2 

-116 .9 
-130.1 
-143 .3 

<W2)V2 

9.5 
18.2 
23.2 
56.5 
75.5 
91.4 

130.9 
135.4 
176.1 
204.3 
213.8 

<«) 
661.9 
664.5 
664.2 
668.6 
675.0 
677.3 
680.6 
688.1 
691.4 
693.3 
698.0 

real 

<a,2)i/2 

852.9 
854.4 
854.2 
858.5 
862.7 
863.7 
867.0 
872.9 
875.6 
877.7 
881.4 

" The moments were calculated using the distribution g(u) shown in 
Figure 12 by restricting the limits on frequency to be |u>| < 2000 cm-1. 

from the curvature of the inverse total force metric. From the 
data in Figure 6 for the total force metric, we estimate that (o>2) FT 
= 1.4 X 105 cm-2, roughly independent of the temperature. In the 
Debye model, the density of states is assumed to be quadratic, 
which will be a good approximation at low frequencies and a poor 
one at high frequencies. Inspection of normal mode spectra for 
a number of proteins of approximately 100 residues indicates 
that the vibrational density of states is Debye-like up to 40 cm"1.22 

From eq 19 and our data for the total force metric, we estimate 
the Debye frequency to be WD = 480 cm-1, which is slightly larger 
than the direct estimate of the root-mean-square frequency 
<W2)FT1''2 = 370 cm-1 based on the total force metric. These 
results are in disagreement with the second moment of the density 
of states directly calculated from the normal mode data for the 
S-peptide, which is typically <o>>eMCt

1''2 = 860 cm-1 (see Table 1 
where the frequencies considered were restricted to be |«| 5 2000 
cm-1 to exclude the hydrogen stretches (at 3000-3400 cnr1), which 
have a low effective mass and do not contribute substantially to 
<<O2>FT). 

The magnitudes of the three calculated values of the second 
moment of the density of states are ordered WFT < OJD < '•'exact' 
The ordering COD < «eXact is due to the fact that the Debye model 
assumes a stronger frequency dependence g(&>) =* w2 than is 
observed in the calculated density of states which consists of a 
bunch of modes below 1800 cm-1 followed by very little until the 

•3 

•I 

Time5(ps) 
Figure 8. Normalized nonbonded energy metric, </EN(0)/</EN(0<

 a s a 

function of time for the enzyme/product complex. 

hydrogen stretches above 3000 cnr1. The Debye form must count 
these bunches of high frequency modes, and it does so by collecting 
them at lower frequency, leading to a smaller estimate for the 
mean-square width of the distribution. 

The discrepancy between («2)FT and (a)2>eMCt is likely due to 
the anharmonicity of the protein motion, which is ignored in the 
normal mode approximation made in the derivation of ^Fr(O)/ 
^FT(O- The data in Figure 7 demonstrate that the assumption 
that the average effective mass of each normal mode is the same 
is justified. Returning to eq 1S, we have calculated the quantities 
((m)u>2) HTidM{o32). For the configuration tested we found the 
square root of the ratio,«(m)o>2)/M(u2)y'2, to be 0.74 for all 
modes and 0.97 when hydrogen stretches are excluded. Thus, 
once we restrict the average for (<o2}eMCt to frequencies less than 
2000 cnr1, we can expect eq 16 to provide an accurate result 
within the harmonic approximation. Nevertheless, the value 
predicted by the harmonic model for the total force metric is 
significantly smaller than the exact value computed directly from 
the density of states. The difference in <«>FTand <a>2)eXactmust 
result from the assumption that the potential energy hypersurface 
is harmonic, even at the lowest temperatures. Anharmonicity in 
the vibrations, particularly at lower frequency, leads to a 
significant reduction in the value of («2)FT below the exact 
harmonic result. We conclude that anharmonicity is essential 
to the accurate description of the protein dynamics even for very 
short times of 1-5 ps. It may be possible to employ a 
quasiharmonic analysis to treat these differences.15 

Using the fluctuation metric, we have shown that the kinetic 
energy is equipartitioned on a timescale of picoseconds.2 The 
longer time relaxation associated with conformational transitions 
in the peptide is best explored using the metric of the nonbonded 
(Coulombic and van der Waals) potential energy ef(t) for the 
yth atom in the ath trajectory 

1 N 

^ N ( 0 = - y > / ( ' ) - e / ( 0 ] 2 (26) 
Nj.i 

The results are displayed in Figure 8. 
In the nonbonded energy metric, we see a rapid initial 

convergence followed by a slow, long time decay. The initial 
convergence is significantly greater at 300 K than in the lower 
temperature trajectories. The plateau in the reciprocal metric 
is reached within 3 ps for T < 240 K. This indicates that at lower 
temperatures the peptide motion is confined to fluctuations about 
a single CS without significant conformational transitions on a 
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Figure 9. Plots of the nonbonded energy metric ^ENW. 0"(Ot Q*(0. and 
A**(r) as a function of time for the RNase A enzyme/product complex 
at (top) 40 and (bottom) 300 K. The thin solid line represents XdM, 
the open circles correspond to Q"(0, the closed circles to Ub(f). The thick 
solid line is </ENW = «"(0 + Q*(0 -**»«). 

75-ps time scale. At 300 K, there is a significant region of linear 
convergence, followed by a plateau beyond 15-ps. This behavior 
clearly indicates the presence of a wide distribution of time scales 
for the protein motion. The significant point is that even within 
this short time scale, several CSs are sampled, as indicated by 
the change in the slope of </EN(0- We expect that the initial 
convergence is due to two mechanisms: (1) atoms rapidly 
exploring the local potential and (2) the similarity in the a and 
b trajectories of interactions along the main chain which are 
largely independent of the protein conformation. The longer time 
relaxation is related to infrequent barrier crossing, largely in the 
form of dihedral angle transitions (discussed below) and the 
diffusive motion of subdomains of the protein, which may shift 
in relative orientation.4 We expect these motions to occur on 
much longer time scales. 

Decomposition of the nonbonded energy metric into the 
fluctuation metric and its cross terms provides an interesting 
contrast between the low- and high-temperature dynamics. The 
corresponding decomposition, into fluctuation metrics and cross 
terms according to eq 7 is shown in Figure 9 at 40 and 300 K. 
At both 40 and 300 K, the fluctuation metrics are nearly identical, 

4rrv , N6 
Time (ps) 

Figure 10. Normalized nonbonded force metric, rfFN(0)/dFN(0. as a 
function of time for the enzyme/product complex generated from (top) 
two independent trajectories and (bottom) two 25-ps portions of a single 
50-ps trajectory. 

indicating that the fluctuations in the two structures are similar. 
The similarity in the average structure of the a and b trajectories 
at 40 K manifests itself in the presence of a significant cross term 
A^(O, indicating that the nonbonded energy is correlated between 
the two structures and does not decay over 30 ps. At 300 K, the 
nonbonded energy metric is initially smaller and decays to near 
zero in approximately 10 ps, indicating that there are dihedral 
transitions allowing the system to sample independent CSs within 
the 30 ps trajectory. 

A dramatic demonstration of the presence of multiple CSs in 
proteins can be made by comparing the force metric calculated 
using two independent (a and b) trajectories and the force metric 
calculated by dividing a single trajectory (just a) into two portions. 
In Figure 10 we show the reciprocal of the nonbonded force metric 
^FN( ' ) for the full enzyme calculated using (1) two independent 
trajectories and (2) two portions of a single 50-ps trajectory. The 
data calculated using the independently generated trajectories 
are similar in form to the results for the S-peptide.2 These results 
suggest that on the time scale of 50 ps the system explores distinct 
CSs and that much longer times are needed for transitions between 
CSs explored by the two independent trajectories. However, the 
data calculated from a single trajectory show that at low 
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Figure 11. Reciprocal of the dihedral energy metric, </ED(0)/'̂ EDW as 
a function of time for the enzyme/product complex. 

temperatures there is rapid convergence of the force metric. This 
indicates that on the time scale of our simulation at low 
temperatures the single equilibrium trajectory tends to fluctuate 
about one particular substate. Interestingly, as the temperature 
is increased, the rate of convergence decreases, indicating that 
the protein is making transitions between nonequivalent substates, 
slowing the convergence of the metric. A similar comparison 
made for the S-peptide using two 75-ps portions of a 150-ps 
trajectory leads to qualitatively identical results. This calculation 
demonstrates that averaging over a single long trajectory may 
lead to artificially small fluctuations and a false sense of the 
accuracy of a given calculated property since the calculation 
includes an average over a single CS. Thus, running an ensemble 
of independent, short trajectories of10—15 ps will provide better 
averaging than a single long trajectory. 

Since the work of Flory, it has been appreciated that significant 
changes in the conformation of peptides and proteins are tied to 
transitions of dihedral angles. We have developed a useful means 
of measuring the progress in conformational sampling through 
dihedral angle transitions using the dihedral angle energy metric 
^ED(O-2'38 The results for d^oit) of the S-peptide are shown in 
Figure 11. It is expected that the nonbonded energies depend 
parametrically on the dihedral angles and that relaxation of the 
nonbonded interactions requires dihedral angles transitions.2 At 
temperatures <240 K, the behavior of the dihedral energy metric 
closely follows that of the nonbonded energy </EN(0 (see Figure 
8). At 300 K, there is more rapid self-averaging in the energy 
of the dihedral angles, which shows a roughly linear convergence 
over the full 30 ps. However, it is important to note that there 
are several slopes in the 300 K trajectory, indicating the presence 
of multiple time scales, presumably due to the distribution of 
rates of transition for the various dihedral angles. 

There is an important distinction between convergence of </EN-
(0 and ^ED(')- The dihedral angle potential energy is a local 
function of the dihedral angle between four atoms, and local 
transitions in the dihedral angles can lead to significant conver
gence in </ED(0- However, the nonbonded potential energy is a 
nonlocal function, and the convergence of </EN(') requires global, 
cooperative fluctuations in addition to localized dihedral angle 
transitions. Therefore, convergence of <?ED(0 is a necessary but 
not sufficient condition for the convergence of </EN(0-

(38) The related dihedral angle energy fluctuation metric has been employed 
recently in an interesting study relating the uncertainty in biomolecular free 
energy calculations to the existence of conformational substates; see: Hodel, 
A.; Simonson, T.; Brfinger, A. T. J. Phys. Chem. 1993, 97, 3409. 

300 

Figure 12. Instantaneous normal mode density of states at several 
temperatures calculated over a 75-ps constant energy trajectory of the 
S-peptide. Imaginary frequencies are plotted on the negative frequency 

C. Instantaneous Normal Mode Spectra. Our results for the 
force and energy metrics show that the long time scale relaxation 
is strongly tied to infrequent events such as dihedral angle 
transitions and activated barrier crossing. To further explore the 
nature of the relaxation processes, we have calculated the 
instantaneous normal mode spectrum for the S-peptide from the 
a trajectories at eight temperatures ranging from 40 to 500 K. 
The resulting normal mode density of states is shown in Figure 
12 at a few select temperatures. At sufficiently low temperatures, 
the eigenfrequencies are real and the density of states agrees with 
the 0 K normal mode spectrum. As the temperature is increased, 
the number of imaginary eigenfrequencies increases. In fact, 
there is a significant percentage of unstable modes evident even 
at 40 K. As the temperature is increased further, the number 
of imaginary frequencies increases and the center of the imaginary 
frequency lobe is pushed to higher (imaginary) frequency. These 
trends are summarized in Table 1. 

The inset of Figure 12 shows in detail the low-frequency 
behavior of the instantaneous normal mode distribution. For 
both the imaginary and real frequency lobes, the initial increase 
at low frequencies, w < 20 cm-1, is linear with a slope which is 
independentoftemperatureforr> 120K. At lower temperatures 
the initial slope is obviously steeper. Keyes and Madan have 
noticed a similar difference in slope for the density of states of 
a Lennard-Jones system above and below the glass transition 
temperature.39 For the S-peptide, the change in low-frequency 
behavior is coincident with the onset of a significant number of 
dihedral angle transitions, just as the change in slope for the 
Lennard-Jones system is coincident with the onset of self-diffusion. 

The linear frequency dependence for g(o>) translates into a 
predicted low-temperature heat capacity which increases as Q-
(T) = I2, It is well known that the low-temperature heat capacity 
of glasses varies approximately linearly with temperature. This 
is often interpreted in terms of a constant density of tunneling 
states. However, at higher (but still low) temperatures, where 
phonons make some contribution, one can derive a Cy(T)« Tby 
assuming a constant density of vibrational states. Data of 
Hutchens, Cole, and Stout40 for the heat capacity of insulin and 
bovine chymotrypsinogen A in the range of 10 K < T < 20 K 
could be interpreted, with some ambiguity, to be increasing as 

(39) Keyes, T., private communication. 
(40) Hutchens, J. O.; Cole, A. G.; Stout, J. W. J. Biol. Chem. 1969, 244, 

26. 
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Figure 13. Fraction of unstable modes/u( T) as a function of temperature 
calculated from a 7 S-ps constant energy trajectory of the S-peptide. Shown 
for comparison is the fit to/u( T) using eqs 20,22, and 27 and that calculated 
from the distribution of barriers computed for the tetrapeptide AIa-
Val-Ala-Ala by Choi and Elber. 

T1. However, data at lower temperatures would be required to 
remove this ambiguity. 

In Figure 13 we show the fraction of unstable modes /u( T) as 
a function of temperature for the S-peptide in vacuum based on 
the data in Figure 12. The fraction of unstable modes is zero at 
0 K and then rises quickly through 100 K, at which point there 
is a break in slope, leading to a slower increase through higher 
temperature. At 120 K there is a noticeable dip in the fraction 
of unstable modes. 

The behavior offa(T) is readily interpreted in terms of the 
model presented in section III. According to this model, we 
represent the rugged energy landscape by a piecewise harmonic 
potential with an arbitrary distribution of barrier heights g(Ea). 
A large number of modes in the peptide, such as localized harmonic 
bond and angle vibrations, will remain stable even at the highest 
temperatures. Other modes, such as those localized in dihedral 
angles or the low-frequency, continuum-like, global fluctuations, 
can become unstable. Physically, we know that the quick increase 
in fu(T) even at very low temperatures indicates significant 
anharmonicity in the lowest frequency vibrational modes and the 
presence of many low barriers where 2^BAB <* 100 K. In our 
model, this rapid rise in fa(T) at low temperature is attributed 
to the presence of many low barriers. The slower rise in/u(r) 
at higher temperatures indicates the presence of many high 
barriers, and the rate of increase in /U(JT) at high temperatures 
may depend sensitively on the particular distribution g(Es). 

The distribution function g(£s) can be obtained by solving the 
homogeneous Fredholm integral equation of the first kind (cf. eq 
20) using our caricature of the true rugged energy landscape. In 
general, there are two methods for solving such equations. The 
solution may be obtained by expanding #(£B) in terms of known 
functions and adjusting the coefficients to minimize the square 
of the deviation between the computed/,(7) and the assumed 
/u( T). Alternatively, a variational ansatz for g{E*) can be chosen, 
and the coefficients in the ansatz can be adjusted to obtain the 
best fit. We adopted the later procedure and chose a (nonunique) 
functional form for giEs) that incorporates the physical insight 
provided by the changes in fa(T) with temperature: 

g(EB) = <rf(£low- £B) + bEBe-E<>'E° (27) 

EB (kcal/mole) 
Figure 14. Distribution of barrier heights extracted from a fit of the 
fraction of unstable modes as a function of temperature. Shown for 
comparison is the distribution of adiabatic barrier heights measured 
directly for the tetrapeptide Ala-Val-Ala-Ala by Choi and Elber. 

Q(E)) and a Poisson distribution of higher energy barriers (with 
a maximum at Em11x = E0. A fit to our data for /,(T) using a 
symmetric piecewise parabolic potential energy leads to a = 0.325 
(kcal/mol)-1, Eiav = 0.2 kcal/mol, 6 = 0.130 (kcal/mol)-2, and 
E0 = 1 kcal/mol. The distribution divided by the proportionality 
constant 0.65 (kcal/mol)-2, which was used as a fitting factor, 
was reported previously.3 

The barrier height distribution integrates to/d£g(£) = 0.195, 
of which 0.065 is due to the constant distribution of low barriers 
with £B < 0.2 kcal/mol while the Poisson distribution of higher 
energy barriers contributes 0.13. For our model of each normal 
mode moving over a symmetric piecewise parabolic potential, at 
high enough temperature the probability of being in a well or 
barrier region will be7u(£B> T) = 1/2. It follows that in the limit 
of high temperatures, the fraction of unstable modes will approach 
fu(T = oo) = 0.0975, meaning that roughly 20% of the 
instantaneous normal modes are expected to become unstable. 

Our variational ansatz for g(E*) with the above choice of 
parameters solves the integral equation adequately over the entire 
temperature range. This is shown in Figure 13, where a 
comparison between fa(T) computed by MD simulations and 
that obtained by evaluating the right-hand side of eq 20 using eqs 
22 and 27 is given. The fit is good over the full range of 
temperatures examined. 

The form of g{E^) is shown in Figure 14 with a histogram of 
the distribution of energy barriers calculated for the tetrapeptide 
Ala-Val-Ala-Ala by Choi and Elber. The tetrapeptide data are 
plotted with a resolution of 1 kcal/mol and show a large number 
of low-energy barriers, where £B < 1 kcal/mol, in qualitative 
agreement with our result for g(EB) • However, the tetrapeptide 
has many high-energy barriers which are not present in our form 

Figure 13 shows the result of using the distribution of barriers 
calculated by Choi and Elber for the tetrapeptide in eq 38 to 
predict /u( T). We also show two other plots, the first being the 
contribution to the fraction of unstable modes due to the 
distribution of the higher energy barriers based on eq 27 for 
g(£B). where a = 0: 

«,(£,) « bEBe-E^E" (28) 

In our model, g(E^) consists of a constant density of low-energy 
barriers for E < Elov (written in terms of the Heaviside function 

The resulting /u( T) predicted by (1) the high-energy portion of 
our distribution gd(EB) and (2) the tetrapeptide data of Choi and 
Elber are in reasonable agreement. Therefore, the difference 
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Figure 15. Number of (top) dihedral angle transitions per unit time (1 
ps) and (bottom) dihedral angles making transitions as a function of 
temperature for the 75-ps constant energy trajectories for the S-peptide 
at a series of temperatures. In the bottom part we show our theoretical 
estimate of the number of dihedral angle transitions based on the 
distribution of barrier heights derived from our model for/u(T). 

between fu(T) at large £ B calculated using gi(EB) for the 
tetrapeptide and our model cannot be resolved by a measurement 
of UiX) through 500 K. To obtain information on the high-
energy portion of g(£B), one must simulate/u(7*) at much higher 
temperatures so that ]{T,EB) is large enough to contribute to 

Mn 
Long-length scale changes in the peptide structure necessary 

for effective sampling of conformation space will require many 
dihedral angle transitions. Based on our model of the increase 
in fu(T) as a function of temperature and our analysis of the 
nonbonded metrics, we expect to see an increase in the number 
of dihedral angle transitions as the temperature is increased. In 
Figure 15 we show (a) the number of dihedral angles making 
transitions and (b) the total number of dihedral angle transitions 
as a function of temperature. The increase in dihedral transitions 
is strongly correlated with the increase in the fraction of unstable 
modes described by the high-energy portion of g(EB) (see Figure 
14). At 40 K and below, no dihedral angle transitions were 
measured. It follows that the significant fraction of unstable 
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modes measured at 40 K and modeled by the constant low-energy 
term in giEB) does not result from dihedral angle transitions but 
is more likely associated with collective fluctuations or stable, 
anharmonic motion. 

To examine this proposal more carefully, we can estimate the 
total number of dihedral angle transitions expected during a 75-
ps trajectory of the S-peptide based on g{EB) and the assumption 
that the high-energy Poisson distribution corresponds to the 
distribution of barriers for the peptide dihedral angles. For a 
single dihedral angle with barrier £B> the total number of 
transitions which occur in a simulation at temperature Twill be 
approximately k{Et,T)tam—the rate of transition k(EB,T) per 
unit time times the simulation time t,im. If we average the number 
of transitions expected for a single dihedral with characteristic 
barrier height E6 over the distribution of barriers gi(EB) and 
multiply by the total number of vibrational degrees of freedom 
37V, we can estimate the total number of dihedral angle transitions 
per unit time (taken to be 1 ps) to be 

n6(T) = 3tf/0"d£B gd(£B)fc(£B,r) (29) 

For the distribution of barrier heights, we use the high-energy 
Poisson distribution gi(EB) derived from the instantaneous normal 
mode analysis (see eq 28). 

For the S-peptide, the number of atoms in the polar hydrogen 
representation is N = 186. From the normalization of gi(EB), 
we see that the number of dihedral angles which can make a 
transition will be 3NJdEt gi(.EB) «* 73. This number agrees 
surprisingly well with the data of Figure 14 at 500 K, where the 
number of dihedral angles making a transition is 64. For the 
transition rate, we assume a simple transition-state theory 
equilibrium rate constant for a harmonic system with well 
frequency o>0 in which the barrier height EB » kBT: 

k{EB,T) = | j e - « * (30) 

A more general form of the rate constant for conformational 
transitions in the protein can be derived from the theory of Helfand 
and Skolnick.41 Equation 30 is a special case of their theory in 
the transition-state limit for the case of a one-dimensional periodic 
potential. 

The frequency <o0 was approximated by assuming that the well 
minima are separated by IT radians and that the moment of inertia 
of the dihedral angle is 25 gA2/mol. Combining eqs 29,28, and 
30, the well frequency is «0 = (4/ir)(418.4£B//)1/2. where EB is 
in kcal/mol and / is in gA2/mol, and the total number of dihedral 
angle transitions as a function of temperature can be estimated. 
The results are displayed in Figure 15. Through 300 K, our 
theoretical estimate of the number of dihedral angle transitions 
agrees well with the simulation data. We emphasize that the 
number of dihedral angle transitions was predicted from the barrier 
height distribution derived from fu(T) and includes no adjustable 
parameters other than the moment of inertia (a multiplicative 
constant). It follows that the agreement in Figure 15a is an 
independent confirmation of the reasonableness of our predicted 
barrier height distribution g(EB). Certainly our model has many 
approximations, including the use of an approximate moment of 
inertia and the asymptotic (£B » kBT) form of the transition 
state theory rate constant for a harmonic system. As such, it is 
not surprising that the increase in transition number at 500 K is 
not followed by the model. Nevertheless, the good agreement 
lends supports to our claim that the instantaneous normal mode 
calculation may be used as a powerful probe of the barrier height 
distribution in peptides and proteins. 

(41) Helfand, E. /. Chem. Phys. 1971,54, 4651. Skolnick, J.; Helfand, 
E. J. Chem. Phys. 1980,72,5489. Skolnick, J.; Mattice, W. L. Macromolecules 
1981,14, 292. 
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VI. Conclusion 

The ultimate goal of theoretical modeling of proteins is to 
understand, at a microscopic level, the relation between their 
motions and biological activity. It is becoming clear that this 
involves the knowledge of how proteins explore the complex energy 
landscape. In this study we have presented quantitative ways of 
probing the multivalley structure in heterogeneous systems in 
general and in proteins in particular. The major results of this 
study are summarized below. 

(1) We have used replica molecular dynamics, in which the 
properties of two molecular dynamics trajectories generated from 
independent initial configurations are compared, as a means of 
exploring the complex energy landscape in proteins. This method 
is used to compute the force metric and energy metric from the 
dynamics of conformational state sampling in the S-peptide and 
ribonuclease A. 

The most important conclusion of our study is that the 
conformational substates picture, which has been found to be 
necessary to rationalize a series of experiments on the dynamics 
of binding of small ligands to proteins, already becomes relevant 
when describing the motion of proteins on the time scale of 10 
ps. This suggests that CSs are present on all length scales, and 
therefore even moderate rearrangement of segments in proteins 
necessary for folding from denatured states will be a highly 
cooperative process involving transitions over several barriers 
separating the different conformational states. The metrics also 
provide a microscopic relationship between the different motions 
that are involved as the structure of the protein changes with 
temperature. In particular we find that there appears to be a 
close connection between the relaxation of nonbonded interactions 
in proteins and the dynamics of dihedral angle transitions. The 
former large-scale motion which is responsible for the folding of 
proteins is in fact mediated by a sequence of local dihedral angle 
transitions. 

(2) Since there are numerous CSs that lead to diversity in the 
time scale for protein motion, it becomes necessary to provide a 
statistical description of the energy landscape. To this end we 
have also introduced a novel method to compute the distribution 
of barrier heights in the complex energy landscape. This is 
accomplished by exploiting the properties of the eigenvalue 
distribution of the normal modes of the system. A simple 
caricature of the complex energy landscape is used to derive an 
integral equation relating the distribution of barrier heights to 
the fraction of unstable normal modes. The picture of the 
landscape used to obtain the integral equation is quite general 
and should be applicable to any systems whose underlying 
landscape is rough. The application of this methodology to the 
S-peptide shows that the distribution of barrier heights obeys a 
Poisson function. Evidence from theoretical studies of a tet-
rapeptide and experiments suggest that this may be a general 
feature of proteins. The Poisson distribution for barrier heights 
becomes necessary to account for kinetics of rebinding of small 
ligands in which the binding is dictated by the complex energy 
landscape of proteins.' The analysis of the normal mode spectrum 
of proteins also leads to the number of dihedral angle transitions 
that are expected to occur on a given time scale. We have used 
the Poisson distribution for the barrier heights to calculate the 
number of dihedral angle transitions as a function of temperature 
that are expected to occur on a given time scale. The results of 
this calculation are in very good agreement with the simulations, 
further validating our model of the complex energy landscape. 

(3) From a technical point of view, our study has very important 
implications for the simulation of biological molecules in which 
the interplay between several energy scales leads to a complex 
energy landscape. We have shown that in order to obtain reliable 

(42) Bader, J. S.; Kuharski, R. A.; Chandler, D. J. Chem. Phys. 1990,93, 
230. 

(43) Hermans, J. Proteins 1993, 77(1), ii. 
(44) Shi, Y.-Y.; Mark, A. E.; Wang, C-X.; Huang, F.; Berendsen, H. J. 

C ; van Gunsteren, W. F. Protein Eng. 1993, 6, 289. 

results using molecular dynamics simulations, a straightforward 
application may not suffice. Our analysis suggests that the 
following strategy, which has been applied in another context,42 

should be followed when simulating systems dominated by the 
presence of several distinct conformational states separated by 
large barriers. One should generate an ensemble of independent 
initial conditions at high enough temperatures where the relevant 
barrier heights become irrelevant. Starting from these distinct 
initial conditions, the system can be quenched to the desired low 
temperature. The various initial configurations, in all likelihood, 
would map on to distinct conformational substates. The con
formations belonging to a single CS can be sampled effectively 
at a rate that can be monitored using the fluctuation metric. The 
average over all the conformational substates would provide an 
accurate result for the quantity to be computed. Thus it is more 
accurate to average over several short trajectories each (pre
sumably) sampling a distinct conformational substate than to 
average over one long trajectory. 

The possibility of obtaining converged results in simulations 
of proteins has been the subject of a mounting discussion.2'38'43-44 

In this and previous work we have presented an easily implemented 
quantitative measure of the extent of convergence in simulation 
averages. The question of whether convergence in complex 
systems can be achieved using present computing resources 
remains to be answered in future work. 
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Appendix: The Total Force Metric 

Here we derive the form of the total force metric for a general 
dynamics and for the specific case of a harmonic system. We 
begin with an analysis of the fluctuation metric. The time average 
of the total force, ^/(0. on the/th atom is 

?/') = }JoV) <•* " T^/')" */°)] <A-*) 
where we have used the fact that Fj = rrtj dfy/d$. Assuming 
conservation of linear momentum, we find 

j N \ N 

rto - -57 / ' ) - TrE"1/*/') - 8/°)i= ° <A-2) 
Nj Nt J 

Combining the last two equations with eq 3, we find the following 
form for the total force fluctuation metric: 

1 N 

OFTW " —EM/[p/W + p/<°) - 2e/')'e/°)] (A-3) 
Nt2 j 

After a short time we expect that the kinetic energy will 
equipartition, and we can replace the first two terms on the right-
hand side with the thermal average (mjv/) = 3kBT. The final 
term averaged over all atoms can be written as the momentum 
time correlation function: 

1 N 

(PW(O) > = -^mfaWjW) (AA) 

The final result is 
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On(O • %3*BrM- 2(P(O-P(O))]2 (A.5) 

where we have defined the average atomic mass 

1 N 

M = - V m , (A.6) 

The total force metric is defined in terms of two independent 
trajectories labeled a and b as 

'FT-»£[?/«-?/(oi2 

N' 
(A.7) 

Equation 7 relates the total force metric to the fluctuation metric. 
Substituting our result for the fluctuation metric eq A.5 into eq 
7 leads to the result 

<W0 - ~2W*TM - < p W ( 0 ) > + <P*(0-P*(0)» (A.8) 

where we assume that the velocities are Gaussian variables and 
the cross term 

£ ( p / ( 0 - P / ( 0 ) ) - ( P > ) - p/(0)) = 0 (A.9) 
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1 N 

xr i£a* 
{m}rn 

(A. 13) 

where Oj1 are the projections of the /th normal mode on the mass-
weighted coordinates of the /th atom. 

To evaluate the total force metric, we need to evaluate the 
momentum correlation function. Since 

p = mp, = mfa = ( m / ^ f l j A (A.14) 

. it follows that 

p/0-Py(0) = mYajp'j&iOhiO) (A. 15) 

Using the condition of orthonormality of the normal mode 
eigenvectors 

P/0-P/0) = mjYjfi/mUO) (A. 16) 

The solution for the time evolution of a given normal mode is 

4/(0) 
<?<(') = 9((O) cos(w,0 + sin(«,0 (A. 17) 

Equation A.8 is a general result for the time dependence of the 
total force metric. To evaluate it, we must calculate the 
momentum autocorrelation function. In general, this is a difficult 
problem. However, we now focus on the special case of a harmonic 
system, where this is a simple matter. 

In a zero temperature normal mode approximation, the 
potential is expanded in a Taylor series of the 3JV coupled 
coordinates r" about a mechanically stable equilibrium position 

N NN 

U(r») = U0(r0
N) - Yff*, + l /2£J>v*> (A.10) 

; j i 

where the potential energy at the equilibrium position is t/o('Vv). 
£ s (̂ v_ f0N)t pis tne 3JV-dimensional force vector (which is zero 
about the equilibrium position), and K is the (3iV X 3A0-
dimensional force constant matrix or matrix of second derivatives 
about the equilibrium position. The normal mode transformation 
is defined in the usual way. To summarize, the equations of 
motion for small displacements of the /th atom about the 
equilibrium position are 

and 

q,(t) = -0)^,(0) sin (<o,f) + Q1(O) cos(w,0 (A. 18) 

To evaluate eq A. 16, we first approximate the autocorrelation 
of the velocity of a given normal mode as 

U^MO) - 4,2(0) cos(w,/) at kiTcosiu,!) (A.19) 

where we have performed a thermal average over the initial 
conditions. Collecting eqs A. 16 and A.19, the momentum 
correlation function of eq A.4 is 

(P(O-P(O)) = -Y,*"]2>/ cos(o>,f) 
N j t 

= > ( w)(cos(a),0 (A.20) 
W / 

We have defined the "average mass of the /th normal mode" as 

m,x, *f " ~ / .Kii'Xi (A.11) 

It is convenient to transform from Cartesian to mass-weighted 
coordinates yj • (mj)l/2Xj. The equations of motion become 

y<: 1 -£<•> V ; (A. 12) 

The symmetric frequency matrix w2 may be diagonalized by a 
unitary transformation defined by the matrix a to give the 
equations of motion for the normal mode coordinates qt where 
qt = -u?qi. The eigenvalues W/2 of the frequency matrix are the 
eigenfrequencies squared of the 3iV independent normal mode 
coordinates. The original Cartesian coordinates are related to 
the normal mode coordinates by 

<m>( = J^mfcf (A.21) 
J 

using the normalization condition that 

N 

E M 2 - l (A.22) 

Inserting eq A.20 for the momentum correlation function into 
the general form for the total force metric eq A.8, we find the 
final result for the total force metric in the normal mode 
approximation: 

i2feBrr i w -j 
<W0 M >"<m),cos(«,0 (A.23) 

t
2 L 3Ni* J 


